
Case History

Reutilização da Purga de Torres de Refrigeração

A Poupança ao seu Alcance

- Redução de Custos de Descarga Águas Residuais
- Garantia de qualidade de água
- Retorno de Investimento inferior a 1 ano

Desafio

O nosso cliente é uma industria alimentar, situada no território de Portugal Continental, com 9 condensadores evaporativos utilizados para a refrigeração de compressores de frio.

O consumo de água nova nestes circuitos atinge uma média anual de 70 m3/h, com um caudal conjunto de purga de 15 m3/h.

A água utilizada na compensação dos circuitos de refrigeração é proveniente da rede municipal, com um custo de 2,10 €/m3 de água consumida.

Igualmente, o custo de tratamento do efluente gerado na ETAR é de 0,21 €/m3, acrescidos de 0,75 €/m3 de custo de descarga para o coletor municipal.

O cliente determinou como objetivos deste estudo a redução de custos da operação.

A tabela abaixo mostra a qualidade de água da purga.

Parâmetro	Unidades	Valor
Turvação	NTU	12
Microrganismos a 37º C	Ufc/ml	> 300
SST	mg/l	22
Condutividade	μS/cm	1 100
Fosfatos	mg/l	4,5
Dureza Total	mg/l CaCO₃	495
Ferro	mg/l	0,83
Cloretos	mg/l	158
Alcalinidade Total	mg/l CaCO₃	147
Salt Density Index		> 4
рН	Esc Sorensen	8.1

Solução Adoptada

A GreatWater E&S efetuou um ensaio com uma unidade piloto constituída por membranas de ultra-filtração do tipo capilar em PVDF. Esta é uma unidade de testes que a GreatWater E&S dispõe.

Foi construído um piloto com uma membrana do tipo HydraCap 40Max, com uma porosidade de 0,08 μ m e uma área de filtração de 52 m².

Foi igualmente colocado um filtro de saco com uma porosidade de 100 µm na entrada da ultra-filtração.

Utilizámos uma bomba com a capacidade de 1 000 lt/h a 20 mca.

Foi considerado um sistema de sopragem de 15 Nm3/h a 0,5 bar para o envio de ar no processo de limpeza.

Foi também instalado um *rack* de doseamento com um tanque de água limpa, realizando limpezas à membrana diárias com hipoclorito a cada 7 horas, semanais com soda caustica e ácido cítrico, em contra-fluxo.

Resultados Obtidos:

Parâmetro	Unidades	Valor
Turvação	NTU	0
Microrganismos a 37º C	Ufc/ml	0
SST	mg/l	0
Condutividade	μS/cm	1 100
Fosfatos	mg/l	4,5
Dureza Total	mg/l CaCO₃	495
Ferro	mg/l	0,83
Cloretos	mg/l	158
Alcalinidade Total	mg/l CaCO₃	147
Salt Density Index		< 3
рН	Esc Sorensen	8.1

O processo de Ultra-filtração permitiu comprovar que os parâmetros da purga podem ser ajustados, de forma a permitir a sua reutilização.

De notar que as membranas de Ultra-Filtração removem 99% dos vírus e bactérias presentes na água.

Adicionalmente e com o objetivo de verificar o limite de funcionamento da instalação, foi adicionado um filtro de carvão ativado, para remover o cloro livre existente, e uma unidade de osmose inversa, por forma a potenciar a reutilização desta água de novo na compensação do torre de refrigeração.

Desta forma pretendemos conseguir reutilizar 60% da purga, passando o rejeitado a enviar para a ETAR a ser de apenas 6 m3/h.

A compensação das torres deste modo seria reduzida em 9 m3/h, baixando de 70 para 61 m3/h, menos 13%.

Case History

Utilização de Ultra-Filtração para Águas Residuais

A Poupança ao seu Alcance

Resultados Obtidos

Do ensaio realizado, foi possível atingir 75% de conversão na unidade de osmose inversa.

Assim, obtivemos uma água produzida pela unidade de osmose inversa que abaixo se descrimina.

Parâmetro	Unidades	Valor
Turvação	NTU	0
Microrganismos a 37º C	Ufc/ml	0
SST	mg/l	0
Condutividade	μS/cm	44
Fosfatos	mg/l	0,15
Dureza Total	mg/l CaCO₃	1,2
Ferro	mg/l	0,02
Cloretos	mg/l	4,5
Alcalinidade Total	mg/l CaCO₃	7
рН	Esc Sorensen	6,2

Comentários

Foi possível atingir um grau de funcionamento, acima do esperado em termos de conversão da unidade de osmose inversa.

Assim, o rejeitado da unidade a seguir para a ETAR foi de 3,75 m3/h, sendo reutilizado na compensação das torres de refrigeração 11,25 m3/h, correspondendo a uma redução do consumo de água fresca de 16%.

O funcionamento da unidade apresentou uma tendência regular, sem qualquer tipo de alterações, tendo funcionado durante 30 dias seguidos sem qualquer tipo de interrupção.

Toda a água produzida foi adicionada diretamente na bacia da torre de refrigeração, representando neste teste uma redução de água fresca de 8 100 m³.

Benefícios e Cálculo de Retorno

Anualizando, podemos determinar os custos em água e tratamento e descarga do efluente gerados pela purga das torres, que se encontram resumidos na tabela seguinte.

Compensação Inicial	m³/ano	571 200
Purga Inicial	m³/ano	122 400
Compensação Final	m³/ano	475 320
Rejeitado Final	m³/ano	30 600
Poupança Água Fresca	m³/ano	95 880
Poupança na ETAR	m³/ano	91 800
Poupança Água Fresca	€/ano	201.348,00€
Poupança na ETAR	€/ano	88.128,00 €
Poupança Anual Total	€/ano	289.476,00 €
Retorno do Investimento	11.2	197.690 m ³
ROI / ROE	11,2 meses	187 680 m³

